yoshidanobuo’s diary

「大学への数学」執筆者,吉田信夫の数学雑記ブログ

【吉田信夫のブログへ,ようこそ!】(執筆書籍一覧)

吉田信夫のブログへようこそ. 数学ネタばかりになると思いますが,お楽しみください. 動画も貼っていこうと思っています. ご訪問の記念に,ご興味をお持ちいただけるものがあれば,ポチっとして行ってください. ●思考力・判断力・表現力の本(東京出版)…

ジュニア広中杯・初等幾何の問題を,初等的にやってみよう ②

先日の2020年ジュニア広中杯の問題で三角形の形状を特定してみようとしたら,なかなか面白かった! 答えは,5:7:6(順番を変えて5:6:7にすれば良かった・・・失敗) 真ん中にある円をどう見るか? まず,△PQRの内接円であると見ることができます.…

収束する数列の和は,極限値の和に収束する

数学を教える仕事を長くやってきたので,ちょっとは分かりやすく説明できるようになっているかな?という検証です(笑) 内容としては,これまでにもブログで2回紹介した,高校数学とは違う,大人の定義の活用についてです.「収束」を雑に扱ってはならない…

2直線が平行とは・・・方向ベクトルが平行?

直線l,mの方向ベクトルとして u=(1,2,-1) v=(a^3-2a^2+2,a^3-3a^2+a+3,a^3-2a) をとることができます. mの方向ベクトルにおいて,「x成分の2倍がy成分と等しい」ことが必要だから 2(a^3-2a^2+2)=a^3-3a^2+a+3 a^3-a^2-a+1=0 (a+1…

ジュニア広中杯・初等幾何の問題を,初等的にやってみよう

2020年のジュニア広中杯の問題です. さて,「あること」って,何なんでしょう?謎のヒント,「○い●ん」とは?? キーワードは相似,相似比です.色んな解き方がありますから,考えてみてください.ここでは,できるだけ鮮やかに解くことを目指します! とい…

こんな問題を作ってみたんですけど,どうでしょう? ③

2次関数などで同じような問題を解いたことはあるのではないかと思いますが,3次関数になっても解けるでしょうか? 同じようなセリフを何回も書いてますな(笑) 今回は,関数を合成してみました.初見だと,ちょっと戸惑わないですか? 正解は,【a>0,b…

2 / 13 = 0. 1538461538461538 ‥‥から

お世話になっている出版社「現代数学社」の雑誌「現代数学・2020年10月号」に載っていた問題を見て考えた(思い出した)ことがあるので,ちょっと書いてみます. 中学入試算数の元ネタになることもある,整数・分数・小数の性質です. (1) 0. 38461538461538…

灘中算数の問題に大人の武器を用いて挑んでみた

中学入試算数って,○○算が幅を利かせる世界だと思っていませんか?実はそんなことはなくて,解法当てはめで解ける問題ばかりではありません.(中学の難易度によって違いますけど,灘中ではそんなほとんど問題は出ません) 思考と工夫で乗り切るパズル的な問…

こんな問題を作ってみたんですけど,どうでしょう? ②

2次関数などで同じような問題を解いたことはあるのではないかと思いますが,3次関数になっても解けるでしょうか? 前回も同じようなセリフを書いたような(笑)「漸近線に注目したら,d もすぐに分かる」という別解をいただき,悔しいので同じような問題で…

こんな問題を作ってみたんですけど,どうでしょう?

2次関数などで同じような問題を解いたことはあるのではないかと思いますが,2次曲線になっても解けるでしょうか? 小難しい数学の理論を知っている子ではなくて,こういう問題にしっかり挑める子を育てたい,というのが私の思いです. 正解は,a<0,b<0…

z^3 の偏角が,z の偏角の3倍だと思っていませんか?

ド・モアブルの定理で,特に n=3 のとき, (cosθ+i sinθ)^3=cos(3θ)+i sin(3θ) z=r(cosθ+i sinθ) (r>0)とおくと, z^3=r^3 {cos(3θ)+i sin(3θ)} だから, z^3 の偏角は 3θ ‥‥(*) ですね. と,思いきや・・・ (*)は本当に正しいですか?? 偏角の…

ぽっこりカワイイ曲線の漸近線を求めるのは楽ではない ③

『曲線 x^3+y^3-1-xy=0 の漸近線 3x+3y+1=0 を如何にして求めるか?』シリーズの最終回です. 図を見てください. ぽっこりカワイイ曲線は,45°回転すると,真横を向いたポッコリ曲線に変わりそうです.では,回転はどうとらえましょう? 点P(p,q)…

ベクトルって係数比較できるんでしたよね?

ベクトルって,図形的センスがなくても計算で図形問題が解けるようになる,魔法の道具です. ※今回は,略記として,「ベクトルAB」を(AB)と表すことにします. 例えば三角形PQRの垂心H.外心Oを始点にすると, (OH)=(OP)+(OQ)+(…

このグラフが好きなんですよねぇ

x=0 の周辺で,どこまでも周期を短くしながら振動.しかし,-x≦y≦x の外には出られない.この領域をほぼ埋め尽くすかのごとく,激しく振動します.とはいえ,各 x に対して1点ずつしかグラフ上の点は無いので,拡大すると実はスカスカ. x=0のときのy=0と定…

花子と花見,七五三 これを見て,三角形を連想する人は,マニアさん(笑)

どうやって解きましょう?三角比を使って考えたりもできますし,同じ形をくっつけて真ん中に1辺が2の正三角形を描いてみたり,色々と考えられそうです. ここでは,60°と7から,「花子と花見」を連想したとします.ついでに,「七五三」も.「8・7・5」「8…